CS/SE4-6TE3, CES 722/723: Tutorial 6

October 26, 2010

- Conjugate Vectors

Give three vectors a, b and c so that the three vectors form a conjugate system of vectors w.r.t. the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 9
\end{array}\right)
$$

We can fix the first vector. Let $a=(1,0,0)^{T}$, then $a^{T} A=(1,1,1)$. By inspecting $a^{T} A$ we can set the second vector to $b=(1,1,-2)^{T}$, since $a^{T} A b=0$ iff a and b are conjugate to symmetric matrix A. Then we can set $c=(x, y, z)^{T}$ and find a solution for it.

$$
\left\{\begin{array} { c }
{ a ^ { T } A c = 0 } \\
{ b ^ { T } A c = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ x + y + z = 0 } \\
{ 2 y - 1 6 z = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ x + y + z = 0 } \\
{ y = 8 z }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x=-9 z \\
y=8 z
\end{array}\right.\right.\right.\right.
$$

We can assign any value to z. Let'ss say that we pick $z=1$, then the three conjugate vectors we find are $a=(1,0,0)^{T}, b=(1,1,-2)^{T}$ and $c=(-9,8,1)^{T}$.

- Example to apply the Conjugate Gradient Method

Minimize $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}$, where

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right), \mathbf{b}=\binom{1}{1}, \mathbf{x}=\binom{x_{1}}{x_{2}}
$$

starting from $\mathbf{x}_{1}=(0,0)^{T}$.

Solution:

Initial search direction:

$$
\mathbf{s}_{1}=-\mathbf{g}_{1}=-\nabla q\left(\mathbf{x}_{1}\right)=\mathbf{b}-\mathbf{A} \mathbf{x}_{1}=\binom{1}{1}-\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)\binom{0}{0}=\binom{1}{1}
$$

Step size:

$$
\lambda_{1}=\frac{-\mathbf{g}_{1}^{T} \mathbf{s}_{1}}{\mathbf{s}_{1}^{T} \mathbf{A} \mathbf{s}_{1}}=\frac{2}{7}
$$

Next point:

$$
\mathbf{x}_{2}=\mathbf{x}_{1}+\lambda_{1} \mathbf{s}_{1}=\binom{2 / 7}{2 / 7}
$$

Next search direction:

$$
\mathbf{s}_{2}=-\mathbf{g}_{2}+\beta_{2} \mathbf{s}_{1}
$$

where

$$
\mathbf{g}_{2}=\nabla q\left(\mathbf{x}_{2}\right)=\mathbf{A} \mathbf{x}_{2}-\mathbf{b}=\binom{-3 / 7}{3 / 7}
$$

and

$$
\beta_{2}=\frac{\mathbf{g}_{2}^{T} \mathbf{g}_{2}}{\mathbf{g}_{1}^{T} \mathbf{g}_{1}}=\frac{9}{49}
$$

So,

$$
\mathbf{s}_{2}=\binom{30 / 49}{-12 / 49}
$$

Step size:

$$
\lambda_{2}=\frac{-\mathbf{g}_{2}^{T} \mathbf{s}_{2}}{\mathbf{s}_{2}^{T} \mathbf{A} \mathbf{s}_{2}}=\frac{7}{6}
$$

Next point:

$$
\mathbf{x}_{3}=\mathbf{x}_{2}+\lambda_{2} \mathbf{s}_{2}=\binom{1}{0}
$$

\mathbf{s}_{1} and \mathbf{s}_{2} are conjugate, i.e., $\mathbf{s}_{1}^{T} \mathbf{A} \mathbf{s}_{2}=0$, and \mathbf{x}_{3} is the optimal solution since $\nabla q\left(\mathbf{x}_{3}\right)=$ $\mathbf{A x}_{3}-\mathbf{b}=\mathbf{0}$.

In theory, the method has the property that, if exact arithmetic is used, convergence will occur in at most n iterations.

